3.114 \(\int \frac{A+B \tan (e+f x)+C \tan ^2(e+f x)}{(a+b \tan (e+f x)) \sqrt{c+d \tan (e+f x)}} \, dx\)

Optimal. Leaf size=210 \[ -\frac{2 \left (A b^2-a (b B-a C)\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{\sqrt{b} f \left (a^2+b^2\right ) \sqrt{b c-a d}}-\frac{(i A+B-i C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f (a-i b) \sqrt{c-i d}}-\frac{(A+i B-C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f (-b+i a) \sqrt{c+i d}} \]

[Out]

-(((I*A + B - I*C)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/((a - I*b)*Sqrt[c - I*d]*f)) - ((A + I*B -
 C)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/((I*a - b)*Sqrt[c + I*d]*f) - (2*(A*b^2 - a*(b*B - a*C))*
ArcTanh[(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])/Sqrt[b*c - a*d]])/(Sqrt[b]*(a^2 + b^2)*Sqrt[b*c - a*d]*f)

________________________________________________________________________________________

Rubi [A]  time = 0.614801, antiderivative size = 210, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 6, integrand size = 47, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.128, Rules used = {3653, 3539, 3537, 63, 208, 3634} \[ -\frac{2 \left (A b^2-a (b B-a C)\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{\sqrt{b} f \left (a^2+b^2\right ) \sqrt{b c-a d}}-\frac{(i A+B-i C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f (a-i b) \sqrt{c-i d}}-\frac{(A+i B-C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f (-b+i a) \sqrt{c+i d}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2)/((a + b*Tan[e + f*x])*Sqrt[c + d*Tan[e + f*x]]),x]

[Out]

-(((I*A + B - I*C)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/((a - I*b)*Sqrt[c - I*d]*f)) - ((A + I*B -
 C)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/((I*a - b)*Sqrt[c + I*d]*f) - (2*(A*b^2 - a*(b*B - a*C))*
ArcTanh[(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])/Sqrt[b*c - a*d]])/(Sqrt[b]*(a^2 + b^2)*Sqrt[b*c - a*d]*f)

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin{align*} \int \frac{A+B \tan (e+f x)+C \tan ^2(e+f x)}{(a+b \tan (e+f x)) \sqrt{c+d \tan (e+f x)}} \, dx &=\frac{\int \frac{b B+a (A-C)-(A b-a B-b C) \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{a^2+b^2}+\frac{\left (A b^2-a b B+a^2 C\right ) \int \frac{1+\tan ^2(e+f x)}{(a+b \tan (e+f x)) \sqrt{c+d \tan (e+f x)}} \, dx}{a^2+b^2}\\ &=\frac{(A-i B-C) \int \frac{1+i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{2 (a-i b)}+\frac{(A+i B-C) \int \frac{1-i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{2 (a+i b)}+\frac{\left (A b^2-a b B+a^2 C\right ) \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{\left (a^2+b^2\right ) f}\\ &=-\frac{(i (A+i B-C)) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c+i d x}} \, dx,x,-i \tan (e+f x)\right )}{2 (a+i b) f}+\frac{(i A+B-i C) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c-i d x}} \, dx,x,i \tan (e+f x)\right )}{2 (a-i b) f}+\frac{\left (2 \left (A b^2-a b B+a^2 C\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{\left (a^2+b^2\right ) d f}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{\sqrt{b} \left (a^2+b^2\right ) \sqrt{b c-a d} f}-\frac{(A-i B-C) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i c}{d}+\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{(a-i b) d f}-\frac{(A+i B-C) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i c}{d}-\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{(a+i b) d f}\\ &=-\frac{(i A+B-i C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{(a-i b) \sqrt{c-i d} f}-\frac{(A+i B-C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{(i a-b) \sqrt{c+i d} f}-\frac{2 \left (A b^2-a (b B-a C)\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{\sqrt{b} \left (a^2+b^2\right ) \sqrt{b c-a d} f}\\ \end{align*}

Mathematica [A]  time = 0.373487, size = 194, normalized size = 0.92 \[ \frac{-\frac{2 \left (a (a C-b B)+A b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d \tan (e+f x)}}{\sqrt{b c-a d}}\right )}{\sqrt{b} \sqrt{b c-a d}}+\frac{(b-i a) (A-i B-C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{\sqrt{c-i d}}+\frac{(b+i a) (A+i B-C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{\sqrt{c+i d}}}{f \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2)/((a + b*Tan[e + f*x])*Sqrt[c + d*Tan[e + f*x]]),x]

[Out]

((((-I)*a + b)*(A - I*B - C)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/Sqrt[c - I*d] + ((I*a + b)*(A +
I*B - C)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/Sqrt[c + I*d] - (2*(A*b^2 + a*(-(b*B) + a*C))*ArcTan
h[(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])/Sqrt[b*c - a*d]])/(Sqrt[b]*Sqrt[b*c - a*d]))/((a^2 + b^2)*f)

________________________________________________________________________________________

Maple [B]  time = 0.193, size = 13474, normalized size = 64.2 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e)),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B \tan{\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}}{\left (a + b \tan{\left (e + f x \right )}\right ) \sqrt{c + d \tan{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e)+C*tan(f*x+e)**2)/(c+d*tan(f*x+e))**(1/2)/(a+b*tan(f*x+e)),x)

[Out]

Integral((A + B*tan(e + f*x) + C*tan(e + f*x)**2)/((a + b*tan(e + f*x))*sqrt(c + d*tan(e + f*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \tan \left (f x + e\right )^{2} + B \tan \left (f x + e\right ) + A}{{\left (b \tan \left (f x + e\right ) + a\right )} \sqrt{d \tan \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e)),x, algorithm="giac")

[Out]

integrate((C*tan(f*x + e)^2 + B*tan(f*x + e) + A)/((b*tan(f*x + e) + a)*sqrt(d*tan(f*x + e) + c)), x)